Fluorinated alternatives to long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluorooalkane sulfonic acids (PFSAs) and their potential precursors

Zhanyun Wanga, Ian T. Cousinsb, Martin Scheringera,⁎, Konrad Hungerbühlera

a Institute for Chemical and Bioengineering, ETH Zurich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
b Department of Applied Environmental Science (ITM), Stockholm University, SE-10691 Stockholm, Sweden

A R T I C L E I N F O

Article history:
Received 30 May 2013
Accepted 27 August 2013
Available online 26 October 2013

Keywords:
Perfluorinated alkyl substances
Perfluorinated carboxylic acids
Perfluorinated sulfonic acids
Fluorinated alternatives

A B S T R A C T

Since 2000 there has been an on-going industrial transition to replace long-chain perfluoroalkyl carboxylic acids (PFCAs), perfluorooalkane sulfonic acids (PFSAs) and their precursors. To date, information on these replacements including their chemical identities, however, has not been published or made easily accessible to the public, hampering risk assessment and management of these chemicals. Here we review information on fluorinated alternatives in the public domain. We identify over 20 fluorinated substances that are applied in [i] fluoropolymer manufacture, [ii] surface treatment of textile, leather and carpets, [iii] surface treatment of food contact materials, [iv] metal plating, [v] fire-fighting foams, and [vi] other commercial and consumer products. We summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. Based on the limited information available, it is unclear whether fluorinated alternatives are safe for humans and the environment. We identify three major data gaps that must be filled to perform meaningful risk assessments and recommend generation of the missing data through cooperation among all stakeholders (industry, regulators, academic scientists and the public).

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Since 2000 long-chain perfluoroalkyl carboxylic acids [PFCAs, \(\text{C}_n\text{F}_{2n+1}\text{COOH}, n \geq 7\)], perfluorooalkane sulfonic acids [PFSAs, \(\text{C}_n\text{F}_{2n+1}\text{SO}_3\text{H}, n \geq 6\)] and their potential precursors (Buck et al., 2011), have attracted attention as global contaminants. Long-chain PFCAs and PFSAs are problematic because they are highly persistent (Frömel and Knepper, 2010; Parsons et al., 2008), bioaccumulative (Conder et al., 2008) and have been detected ubiquitously in the abiotic environment (Rayne and Forest, 2009), biota (Giesy et al., 2001), food items (Clarke and Smith, 2011) and humans (Vestergren and Cousins, 2005). As a result perfluorooctane sulfonate (PFOS) and related substances based on perfluorooctane sulfon fluoride (POSF) were listed under Annex B (restriction of production and use) of the Stockholm Convention in 2009. In 2012 C11–C14 PFCAs were identified as vPvB chemicals (very persistent and very bioaccumulative), and were included in the Candidate List of Substances of Very High Concern under the European chemicals regulation, REACH (ECHA, 2013a). In 2013, also perfluorooctanoic acid (PFOA) and ammonium perfluoroctanoate (APFO) were listed in the Candidate List of Substances of Very High Concern ECHA (2013a).

Driven by concerns about their undesired impacts on humans and the environment, there has been a trend among global producers to replace long-chain PFCAs, PFSAs and their potential precursors with their shorter-chain homologues (Ritter, 2010) or other types of (non)fluorinated chemicals (UNEP, 2012) (these replacements are referred to as alternatives in the following). These industry initiatives began in 2000 when 3M announced a global phase-out of its products based on C6, C8 and C10 chemistry and replaced them with products based on C4 chemistry such as perfluorobutane sulfonic acid (PFBS) (3M, 2000; Ritter, 2010). In 2006, eight major producers of PFCAs, fluoropolymers and fluorotelomer substances joined the US EPA 2010/15 PFOA Stewardship Program (US EPA, 2006) to work towards the elimination of long-chain PFCAs and their potential precursors by 2015.

In this study we address the question: are the fluorinated alternatives to long-chain per- and polyfluoroalkyl products safe for humans and the environment? Recent experience with replacements of other chemicals has shown a “lock-in” problem, i.e. one chemical from a group of structurally similar chemicals was removed from the market and replaced by other chemicals from the same group, but the basic problem was not really solved (Goldstein et al., 2013; Strempel et al., 2012). For example, polychlorinated biphenyls (PCBs) were replaced by short-chain chlorinated paraffins, which are currently being evaluated under the Stockholm Convention.

To answer this question, information regarding alternatives (including chemical structures, physicochemical properties, (bio)degradability,
bioaccumulation potential, (eco)toxicity, production and releases, and environmental and human exposure) is needed. However, due to concerns of business confidentiality, most of the information required to assess the safety of alternatives has not been published or made easily accessible to the public. This lack of data makes it unclear whether alternatives have been fully tested before they are commercialized. It also inhibits scientists and civil society organizations, as an essential supplement to regulators and industry, from proactively minimizing the risks associated with alternatives by conducting monitoring activities and research into the environmental fate and potential adverse effects of alternatives (Goldstein et al., 2013).

Here, we review information on fluorinated alternatives in the public domain in two respects: (i) to identify which chemicals are (possibly) applied in various industry branches or consumer products; and (ii) to summarize current knowledge on their environmental releases, persistence, and exposure of biota and humans. With the information provided, we aim to give an overview of the on-going transitions to fluorinated alternatives and of the potential environmental and human exposure to these chemicals. Due to space limitations, we do not address potential adverse effects of these chemicals. Related information, however, can be found in the following references: Asahi (2006), Borg and Hakansson (2012), ECHA (2013b), EPFA (2010, 2011a, 2011b), Gondo (2011), Hagenaars et al. (2011), Lau et al. (2007), Nørgaard et al. (2010), and Wang et al. (2013a). In addition, it should be noted that several types of nonfluorinated substances are also available as alternatives (e.g., dendirimers, siloxanes and silicone polymers) (Poulisen et al., 2005; UNEP, 2012), but may not perform as well as fluorinated substances, particularly in situations where extremely low surface tension and/or durable oil- and water-repellence is needed (Holt, 2011). For information on nonfluorinated alternatives, we recommend readers to consult other studies that specifically address these substances (e.g., Ulaszewski et al., 2012; Wang et al., 2013b).

2. Production and use of fluorinated alternatives

Here, we summarize the publicly accessible information on the production and use of fluorinated alternatives in different industrial branches (for examples, see Fig. 1). Other fluorinated alternatives might also be on the market; their identities, however, could not be identified.

2.1. Fluoropolymer manufacture

Historically, almost all producers applied ammonium or sodium perfluorooctanoate (APFO and NaPFO) as processing aids in the (emulsion) polymerization of polytetrafluoroethylene (PTFE), perfluorinated ethylene-propylene copolymer (FEP), perfluoroalkoxy polymer (PFA) and certain fluoroelastomers; and applied ammonium perfluorononanoate (APFN) in the emulsion polymerization of polyvinylidene fluoride (PVDF) (Prevedourous et al., 2006). However, during the recent transition, most of the producers have developed their own alternatives. Known commercialized fluorinated alternatives are functionalized fluoropolymerlymers (PPFS), including (i) ADONA from 3M/Dyneon (CF3OCF2CF2CH2OCOCHFCF2COOH-NH2, CAS No. 958445-44-8) (Gordon, 2011); (ii) GenX from DuPont (CF3CF2CF2OCF(CF3)COOH-NH2, CAS No. 62037-80-3) (DuPont, 2010); (iii) cyclic or polymeric functionalized PPFS from Solvay for its PTFE and PVDF manufacture (Marchioni et al., 2010; Pieri et al., 2011; Spada and Kent, 2011) (e.g., a complex process mixture, CF3F2C2O-[CF2CF(CF3)O]n-[CF(CF3)O]m-CF3COOH, n = 1–4, m = 0–2, with a molecular weight in the range of 500 to 650 Da has been registered at the European Food Safety Authority (EFSA), CAS No. 329238-24-6 (EFSA, 2010)); (iv) CF2OCF2OCF2OCOONH2 (CAS No. 908020-52-0) from Asahi (EFSA, 2011a); and another functionalized PPF from Chenguang in China (its structure and CAS No. remains unrevealed) (Xie et al., 2010, 2011). In Europe, GenX has been registered under REACH with a production volume of 10–100 tonnes per year (ECHA, 2013b).

In addition, some producers, such as Daikin (Iwai, 2011), may have used ammonium perfluorohexaneoxide (APFHX) as polymerization processing aids (supported by higher levels of perfluorohexanoic acid (PFHXA) in comparison to other PFCA homologues detected in water samples from a fluoropolymer manufacturing site in France (Dauchy et al., 2012)). Finally, a Chinese producer may use 6:2 fluorotelomer carboxylic acid (6:2 FCTA, CF3F2CH2COOH, CAS No. 53826-12-3) as an alternative processing aid replacing perfluorooctanoic acid (PFOA) (Xu et al., 2011). No information is available on the processing aids currently used by other fluoropolymer manufacturers.

2.2. Surface treatment of textile, leather and carpets

Side-chain fluorinated polymers, which comprise non-fluorinated carbon backbones and side-chains containing a mixture of 6:2–14:2 fluorotelomer moieties (CnF2n + 1-C2H4-, n = 6–14) or moieties derived from POSF, were widely used in surface treatment products to impart water- and oil-repellence to textile, leather and carpets (Buck et al., 2011). A current trend is to use shorter-chain homologues to replace long-chain fluorotelomer- or POSF-based derivatives on side-chains (Ritter, 2010). Since 2003, 3M has commercialized a series of surface treatment products such as Scotchgard PM-3622 (CAS No. 949581-65-1), PM-490 (CAS No. 940891-99-6) and PM-930 (CAS No. 923298-12-8) containing C6 (C6F13SO2-)-side chain fluorinated polymers derived from perfluorobutane sulfonic fluoride (PFBS) (Renner, 2006). Fluorotelomer manufacturers have developed products based on highly purified fluorotelomer raw materials (mostly 6:2, see examples on the OECD Portal on Perfluorinated Chemicals (OECD, 2013)), including copolymers derived from 6:2 fluoroterolomers and organosiloxanes (Udinyne® TG-5521 developed by Daikin and Dow-Corning (Dow Corning, 2007)). Miteni has commercialized polyfluoroalkyl alcohols (3:1 and 5:1 FTOHs, CnF2n + 1-CH2OH, n = 3, 5, CAS No. 375-01-9 and 423-46-1) that can be used as building blocks for side-chain fluorinated polymers (Miteni, 2012) and Solvay has applied PFPEs such as Fluorolink® as alternatives to side-chain fluorinated polymers for textile surface treatment (Solvay, 2011).

Some producers in China and Italy have initiated the production of perfluorohexane sulfonic fluoride (PFxSF, C6F13SO2F)-based derivatives as alternatives in surface treatment products (China MEP, 2012; Miteni, 2012), but these can degrade into perfluorohexane sulfonate (PFHxS) in the environment (D’eon et al., 2006; Martin et al., 2006) and are thus considered as long-chain PFSA precursors (Buck et al., 2011). In China, it is estimated that in the next 5–10 years production of surface treatment products containing PFxSF- or PBSF-derivatives will reach more than 1000 tonnes per year (Huang et al., 2010).

2.3. Surface treatment of food contact materials

After 3M ceased its production of POSF-based side-chain fluorinated polymers (e.g., CAS No. 92265-81-1) and phosphate diesters (SAMPAP, e.g., FC 807, CAS No. 30381-98-7) that were used in food contact materials (3M, 2000), there is no evidence that PBSF-based derivatives are used as alternatives. Fluorotelomer manufacturers have developed products based on 6:2 fluorotelomers to replace their earlier products [both side-chain fluorinated polymers and phosphate diesters (diPAPs)] that were based on longer-chain fluorotelomer derivatives (Lai et al., 2013). For example, since 2008, seven 6:2 fluorotelomer-based side-chain fluorinated polymers have been registered in the Inventory of Effective Food Contact Substance (IFCS) Notifications of the United States Food and Drug Administration; they are CAS No. 1345817-52-8 by Asahi, CAS No. 1012783-70-8, 1158951-85-9, and 1206450-09-0 by Daikin, and CAS No. 1071022-25-7, 357624-15-8, and 1071022-26-8 by DuPont (US FDA, 2013a). In addition, products based on PFPEs such as Solvarea® from Solvay (chemical structures are likely similar to HO(O)(OH)PO-(CH2CH2O)n-CH2CF2-
Fluoropolymer manufacture

ADONA (CAS No. 958445-44-8)

GenX (CAS No. 62037-80-3)

Asahi’s product (CAS No. 908020-52-0)

Solvay’s product (CAS No. 329238-24-6)

Metal plating

N(Et)_4-PFBS (CAS No. 25628-08-4)

6:2 FTSA (CAS No. 27619-97-2)

F-53 (CAS No. 754925-54-7)

F-53B (CAS No. 73606-19-6)

Fire fighting foams and miscellaneous

Fig. 1. Examples of fluorinated alternatives identified in different industry branches.

2.4. Metal (chromium) plating

Historically, salts of PFOS have been used as wetting agents and mist-suppressing agents in decorative plating and non-decorative hard plating. Recent technology development using chromium-III instead of chromium-VI has made PFOS use in decorative chrome plating obsolete. Chromium-III, however, cannot be used for hard chrome plating (UNEP, 2012). In Europe, salts of 6:2 fluorotelomer sulfonic acid (6:2 FTSA, C_6F_{13}C_2H_4SO_3H) are applied as alternatives to PFOS, however, they can only partly be applied in decorative plating due to slightly higher surface tension compared to PFOS (UNEP, 2012). In addition, N(Et)_4-PFBS (CAS No. 25628-08-4) is registered for metal plating under REACH with a production volume of 1–10 tonnes per annum (ECHA, 2013b). Also, a German producer reported a production of 20–50 tonnes of PFBS-based [C_6F_{13}O(CH_2)_2]_2P(O)OH (CAS No. 120945-47-3) in 2003, which is used as defoamer in the electroplating industry (OECD, 2005). In China, several producers have used F-53 (salts of C_6F_{13}OCF_2CF_2SO_3H, CAS No. 754925-54-7) and F-53B (Cl-C_6F_{13}OCF_2CF_2SO_3K, CAS No. 73606-19-6), likely derived from fluorotelomer raw materials, since the late 1970s (Huang et al., 2010; UNEP, 2012). It is estimated that about 20–30 tonnes of F-53 and F-53B were used in 2009 in the metal plating industry (both decorative and hard metal plating) in China (Huang et al., 2010).

2.5. Fire-fighting foams

In the past, various PFCA-, PFSA-, and fluorotelomer-based derivatives were added (i) as film formers in aqueous film forming foams (AFFFs) and film forming fluoroproteins (FFFFPs), (ii) as fuel repellents in fluoroprotein foams (FPs), and (iii) as foam stabilizers in FFFPs and alcohol-resistant aqueous film-forming foams (AR-AFFFs) (Backe et al., 2013; Kleiner and Jho, 2009; Place and Field, 2012). In 2002 3M, which was the only producer, ceased its global production of POSF-based AFFFs (Place and Field, 2012); and thereafter has developed a fire suppression agent based on a gaseous fluorinated ketone [CF_3CF_2C(O)CF(CF_3)_2, CAS No. 756-13-8] (UNEP, 2012). Also, AFFFs based on pure 6:2 fluorotelomers are under development to replace the early generations that are based on a mixture of predominantly 6:2 and 8:2 fluorotelomers (Klein, 2012; Kleiner and Jho, 2009). For example, DuPont commercialized Forafac® 1157 that is based on 6:2 fluorotelomer sulfonamide alkylbetaine [6:2 FTAB, C_6F_{13}C_2H_4SO_2N(CH_3)CH_2CH_2O]_2P(O)OH (Hagenaars et al., 2011; Moe et al., 2012; Pabon and Corpart, 2002) and Forafac® 1183 that is based on 6:2 fluorotelomer sulfonamide aminoxide [C_6F_{13}C_2H_4SO_2NHC_3H_6N(O)(CH_3)_2, CAS No. 80475-32-7] (Jensen et al., 2008). In addition, a Chinese institute has developed an AFFF formulation based
on a PFBS derivative \[\text{[C}_4\text{F}_9\text{SO}_2\text{NH(CH}_2_2\text{)}_\text{NH(CH}_2_2\text{)}_2]\] (Yang et al., 2009; Zhao, 2012), its commercialization, however, is unclear.

2.6. Miscellaneous

In addition to those mentioned above, we have identified the following fluorinated alternatives and their potential uses: (i) The potassium salt of PFBS (CAS No. 29420-49-3) is marketed as a flame retardant for polycarbonate resins; 30–50 tonnes of it were produced in 2003 in Germany (Hubei Hengxin, 2013; Miteni, 2012; Mitsubishi, 2013; OECD, 2005; Wuhan Chemical, 2013). (ii) The imide salt of PFBS \[\text{[C}_4\text{F}_9\text{SO}_2\text{NH(CH}_2_2\text{)}_2\text{]}\] is marketed as a surfactant, acid catalyst, and as a raw material for ionic liquids (Mitsubishi, 2013). (iii) A PFHxS-derivative \[\text{[C}_6\text{F}_5\text{CF}_2\text{aCONH(CH}_2_2\text{)}_3\text{Si(OCH}_3\text{)}_3\text{]}\] is marketed as a surface treatment for glasses, natural stones, metals, wood, cellulose, cotton, leather and ceramics (Miteni, 2012). (iv) In Europe, Dow Corning registered a copolymer comprising 6:2 fluorotelomers and siloxane \[\text{[C}_6\text{F}_{11}\text{CH}_2\text{H}_2\text{Si(OCH}_3\text{)}_3\text{]}\], CAS No. 85857-16-5 under REACH; its intended use is unknown (ECHA, 2013b). (v) Nano film spray products based on polysiloxanes with 6:2 fluorotelomers (in some of the side-chains) are marketed for coatings of nonabsorbing floor materials (Nørgaard et al., 2010). (vi) In the US DuPont produced \text{CF}_2\text{-CF-OCF}_2\text{CF(CF}_3\text{)CF}_2\text{CF}_3\text{SO}_2\text{F} \text{(CAS No. 16090-14-5)} \text{in an amount larger than 11.4 tonnes in 2011 (US EPA, 2012)}, which is likely used as a monomer for a copolymer used in polymer electrolyte fuel cells (Uematsu et al., 2006). (vii) In the US DuPont produced \text{CF}_2\text{OCF}_2\text{CF(CF}_3\text{)OCF}_3\text{OF} \text{(CAS No. 9227-83-5)} \text{in an amount larger than 11.4 tonnes in 2011 (US EPA, 2012)}; and its use remains unknown.

3. Environmental and human exposure to fluorinated alternatives

3.1. Environmental releases

Similarly to APFO and APPN, fluorinated alternatives applied as polymerization processing aids may enter the environment at manufacturing sites where they are produced and used to produce fluoropolymers as well as during use and disposal of fluoropolymer resins. For example, ADONA was monitored between June 2008 and November 2009 in the River Alz (Germany) downstream of wastewater effluent discharges from 3M/Dyneon’s factory and was detected in all samples (range from 0.32 to 6.2 μg/l (Balfu, 2010a)). In addition, ADONA is emitted to air through exhaust gases and then deposited to the ground nearby 3M/Dyneon’s factory. The average deposition rate of ADONA to surface soil near the plant between December 2009 and May 2010 is estimated at 684 ng/(m² d) (Balfu, 2010b). GenX has also been detected in river water downstream of effluent discharges from the DuPont factory in North Carolina (USA) (Strynar et al., 2012). The discharge of PFHxS from a fluoropolymer manufacturing plant in France to the receiving river is estimated at 10 t/yr (Dauchy et al., 2012).

To date, there is no information on releases during use and disposal of fluoropolymer resins that contain fluorinated alternatives; but residual levels of some fluorinated alternatives in fluoropolymer resins are reported. The residual levels of ADONA in the final sintered fluoropolymer materials and an unsintered fluoropolymer micropowder are <0.02 mg/kg and 3.3 mg/kg, respectively (EFSAs, 2011b); and GenX residuals in fluoropolymer resins are below 0.2 mg/kg (DuPont, 2010).

For other fluorinated alternatives, no information regarding releases is available. However, elevated levels of PFBS and/or perfluorobutanoic acid (PFBA, an impurity in PFBS-based derivatives) in water samples from the river Rhine watershed (Lange et al., 2007; Möller et al., 2010), German coast (Ahrens et al., 2010a), Tokyo Bay (Japan) (Ahrens et al., 2010b) and Northwest Pacific Ocean (Cai et al., 2012) indicate an increasing use and release of PBSF-based derivatives and other potential precursors. 3.3. Exposure of biota and humans

The bioaccumulation potential, in terms of serum elimination half-life, of PFBA, PFBS, PFHxS, PFHxS, PFOS and PFOS in humans and mammals has been well studied (see Table 1). In general, PFBA, PFBS and PFHxS, which can be used as alternatives to their higher homologues in some cases or occur as undesired byproducts or degradation products of PBH- or 6:2 fluorotelomer-based alternatives, have shorter half-lives in humans and biota than their longer-chain homologues (Borg and Hakansson, 2012; Iwai, 2011; Wilhelm et al., 2010). In contrast, PFHxS has similar or even longer serum half-lives than PFOS in all tested animals (except female rats) and in humans, which makes PFHxS inappropriate as an alternative to PFOS. For other fluorinated alternatives, only two industry studies of GenX in rats and mice were found (reported to the European Chemicals Agency (ECHA) (ECHA, 2013b); and the data reported are only sufficient to calculate an approximate range of the serum elimination half-life of GenX in rats and mice, see Table 1.

Regarding the absolute exposure levels, a recent study on the temporal trends of PFCAs and PFASs in serum from primiparous women in Sweden between 1996 and 2001 observed a marked increase of PFBS- and 6:2 fluorotelomer-based alternatives, have shorter half-lives in humans and biota than their longer-chain homologues (Glynn et al., 2012). Similar observations of an increasing PFHxS exposure trend after 2006 in the US have also been reported by Kato et al. (2011). For other fluorinated alternatives, no temporal trend data are available.

4. Major data gaps and future perspective

There is some publicly accessible information on fluorinated alternatives; it is, however, still heterogeneous among industrial branches and not sufficient for conducting realistic risk assessments. There are three major data gaps: (i) the identity of many alternatives remains unknown, particularly in those industry branches or regions that are less strictly regulated, whereas e.g. in Europe (EFSAs, 2013) and the US (USD A, 2013b) food contact material producers are obliged to submit specific safety data; (ii) for alternatives that have
been identified, information on their potential impacts on humans and the environment is insufficient (e.g., knowledge on degradability, bioaccumulation potential and (eco)toxicity of PFPEs is largely missing); (iii) for all fluorinated alternatives, the actual volumes that are produced, used and emitted remain unknown.

Furthermore, even those fluorinated alternatives that are considered safe because of low acute toxicity and bioaccumulation according to current regulations may still pose risks in the future. For example, short-chain PFCA and PFSA homologues such as PFHxA and PFBS are as persistent in the environment as the long-chain homologues. Thus, the current increasing global production and use of these chemicals and their potential precursors will lead to increasing widespread environmental and human exposure that will last for the foreseeable future. If, in the future, risks associated with short-chain homologues are discovered and regulatory action needed, it is important to be aware that it will take decades for global environmental levels of these short-chain homologues to respond to any emission reductions.

In order to prevent a “lock-in” problem in the field of fluorinated alternatives, much effort is needed. Above all, communication among stakeholders (manufacturers of fluorinated materials, industrial users of these materials, regulators, scientists and the public) needs to be improved and intensified. A transparent knowledge exchange among stakeholders would enable: (i) developing accurate analytical techniques for alternatives that can be used for further laboratory testing and field monitoring of these chemicals (e.g. PFPEs (Di Lorenzo, 2012)); (ii) developing more sophisticated study designs and data analysis for environmental fate, toxicity and bioaccumulation studies to facilitate up-to-date regulatory decisions; and (iii) developing a new industrial ecology where the latest scientific findings can be readily implemented in the product design phase to develop materials with similar function, but with negligible hazardous properties.

Acknowledgment

Funding by the Swiss Federal Office for the Environment (FOEN) is gratefully acknowledged.

References

Benskin JP, Kstenonou MC, gobas FAPC, Begley TH, Woudien MB, Cosgrove JR. Biodegradation of N-ethyl perfluorooctane sulfonamido ethanoldiester (EEOSE) and EEOSE-based

Poulsen PB, Jensen AA, Wallom F. More environmentally friendly alternatives to PFOS-compounds and PFOSA. Environmental Project No. 1013, Danish Ministry of the Environment, Environmental Protection Agency; 2005.

